
Test 1 Numerical Mathematics 2
December, 2019

Duration: 1 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the
end mark for this test in case of a first attempt. In case of a repair we take the minimum
of the mark obtained here and a 6.

1. Consider the overdetermined problem 1 −1
2 3
2 2

[ x
y

]
=

 3
6
−3


(a) [1.25] Use the Gram-Schmidt algorithm to make a QR factorization of the matrix.

Solution: The length of the first column is 3. So the first column of Q is [1;
2 ; 2]/3. Now we have to orthogonalize the second column with respect to this
column. So we want
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) = 0

which leads to α = 3. The remaining vector is −2
1
0


which has length

√
5. Hence the QR factorization is 1 −1
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 =
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(b) [0.25] Indicate how the least-squares solution can be found using the QR-factorization.

Solution: The least squares solution is found from Rx = QT b.

2. Consider Ax = b with A and b given by

A =

[
1 10−20

2 2 1020

]
, b =

[
1

2 1020

]
.

Let the unit roundoff be given by u = 10−16. Below you have to use this to round the
intermediate results. What will be the solution if we solve the linear system, including
rounding, using, Gaussian Elimination



(a) [0.5] without pivoting,

Solution: We just make the (2,1) element zero. Giving

A =

[
1 10−20

0 2 1020 − 2 10−20

]
, b =

[
1

2 1020 − 2

]
.

After dropping we obtain

A =

[
1 10−20

0 2 1020

]
, b =

[
1

2 1020

]
.

So x2 = 1 and x1 = 1− 10−20 ≈ 1

(b) [0.75] with partial pivoting,

Solution: In the first column, the (2,1) element is bigger than the (1,1) ele-
ment, so we interchange the rows and get.

A =

[
2 2 1020

1 10−20

]
, b =

[
2 1020

1

]
.

Next, we make again the (2,1) element zero, giving

A =

[
2 2 1020

0 10−20 − 1020

]
, b =

[
2 1020

1− 1020

]
.

After dropping due to roundoff we obtain

A =

[
2 2 1020

0 −1020

]
, b =

[
2 1020

−1020

]
.

Hence, x2 = 1 and x1 = 2 1020 − 2 1020 = 0

(c) [0.75] with complete pivoting,

Solution: The biggest element in the matrix is at (2,2) position, which we
have to bring to (1,1) position. This gives

A =

[
2 1020 2
10−20 1

] [
x2
x1

]
=

[
2 1020

1

]
.

where now the unknown vector will be [x2, x1] due to the column permutation.
Now we make the (2,2) element zero and obtain.

A =

[
2 1020 2

0 1− 10−40

]
, b =

[
2 1020

1− 10−20

]
.

After rounding we have

A =

[
2 1020 2

0 1

]
, b =

[
2 1020

1

]
.

which will give x1=1 and x2 = 1− 10−20 ≈ 1



(d) [0.75] with partial pivoting, where a row scaling is applied such that the maximum
on each row of the matrix is 1.

Solution:

A =

[
1 10−20

10−20 1

]
, b =

[
1
1

]
.

Now we get

A =

[
1 10−20

0 1− 10−40

]
, b =

[
1

1− 10−20

]
.

After rounding we get

A =

[
1 10−20

0 1

]
, b =

[
1
1

]
.

Hence x2 = 1 and x1 = 1− 10−20 ≈ 1.

(e) [0.25] Which two approaches will, in general, give the correct result?

Solution: Partial pivoting with scaling and complete pivoting give the correct
result. The first one is by accident correct.

Questions continue on other side



3. Consider the graph

(a) [1.75] Copy this graph to your paper and use that to explain the Cuthill-McKee
ordering on this graph. Also make a sketch of the associated vector of unknowns
and the associated matrix structure such that it is clear where the unknowns and
associated equations go.

Solution: Sketch attached.

(b) [0.25] Explain the relevance of reordering the matrix A, corresponding to the graph,
for solving Ax = b

Solution: The aim of reorderings is reduce the amount of new fill during the
LU factorization, and consequently also to reduce the computation time. It
can be shown that there will never be fill outside the hull around the diagonal
of the matrix containing all the entries. In the Cuthill-mcKee ordering one
tries to make this hull as lean as possible.

4. Consider the matrix-vector multiplication x = Ay, where x, y ∈ R2 and A ∈ R2×2.

(a) [1.5] Show that in the presence of roundoff errors one is actually computing

x̂ = (A+ δA)y

where ||δA||∞ ≤ γ2||A||∞. Here γn = nu/(1 − nu) where u is the unit roundoff.
You may use the lemma that Πn

i=1(1 + δi) = 1 + θn with |θn| ≤ γn for |δi| < u,
i = 1, · · · , n.

Solution: It holds that xi = ai1y1 + ai2y2. In the computer every multi-
plication will produce roundoff error and therefore we have that we actually
compute x̂i = (ai1y1(1 + δi1) + ai2y2(1 + δi2))(1 + δi) for some |δij |, |δi| < u
hence we can replace the above line by

x̂i = ai1y1(1 + θ2,i1) + ai2y2(1 + θ2,i2)

where |θ2,ij | ≤ γ2. From this, we find x̂ = (A+ δA)y with

δA =

[
a11θ2,11 a12θ2,12
a21θ2,21 a22θ2,22

]
.

Using the definition of the infinity norm one can show straightforwardly that
||δA||∞ ≤ max |θ2,ij |||A||∞ ≤ γ2||A||∞.



(b) [0.5] Derive the relative condition number playing a role in the previous part

Solution: From the previous we have that δx = x̂ − x = δAy. The abso-
lute condition number is maxδA ||δx||/||δA|| = maxδA ||(δA)y||/||δA|| = ||y||.
Equality in the last step since we know for vector induced norms we have that
||(δA)y|| ≤ ||δA||||y|| moreover by chosing δA equal to identity (and also for
every fraction of identity) we have equality. So we have Kabs = ||y||.
From this we easily find the relative condition number Krel = Kabs||A||/||x||

(c) [0.5] Show from the previous that the matrix-vector product is forward stable.

Solution: On one hand we know that ||δx||/||x|| ≤ Krel||δA||/||A|| for general
perturbations δA and on the other hand that for the result with rounding it
holds that ||δA||∞/||A||∞ ≤ γ2. So for the matrix vector product we have that
||δx||/||x|| ≤ Krelγ2. Which means that we can bound the relative errror in
the unit-roundoff hence it is stable.


